Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Sci ; 14(7): 1666-1672, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2236575

ABSTRACT

The COVID-19 pandemic has revealed the vulnerability of the modern, global society. With expected waves of future infections by SARS-CoV-2, treatment options for infected individuals will be crucial in order to decrease mortality and hospitalizations. The SARS-CoV-2 main protease is a validated drug target, for which the first inhibitor has been approved for use in patients. To facilitate future work on this drug target, we designed a solid-phase synthesis route towards azapeptide activity-based probes that are capped with a cysteine-reactive electrophile for covalent modification of the active site of Mpro. This design led to the most potent ABP for Mpro and one of the most potent inhibitors reported thus far. We demonstrate that this ABP can be used to visualize Mpro activity and target engagement by drugs in infected cells.

2.
Chembiochem ; 21(23): 3383-3388, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-676815

ABSTRACT

The global pandemic caused by SARS-CoV-2 calls for the fast development of antiviral drugs against this particular coronavirus. Chemical tools to facilitate inhibitor discovery as well as detection of target engagement by hit or lead compounds from high-throughput screens are therefore in urgent need. We here report novel, selective activity-based probes that enable detection of the SARS-CoV-2 main protease. The probes are based on acyloxymethyl ketone reactive electrophiles combined with a peptide sequence including unnatural amino acids that targets the nonprimed site of the main protease substrate binding cleft. They are the first activity-based probes for the main protease of coronaviruses and display target labeling within a human proteome without background. We expect that these reagents will be useful in the drug-development pipeline, not only for the current SARS-CoV-2, but also for other coronaviruses.


Subject(s)
Coronavirus M Proteins/chemistry , Ketones/chemistry , Molecular Probes/chemistry , SARS-CoV-2/enzymology , Binding Sites , COVID-19/diagnosis , COVID-19/virology , Catalytic Domain , Coronavirus M Proteins/metabolism , Humans , Ketones/metabolism , Kinetics , Molecular Docking Simulation , Molecular Probes/metabolism , Peptides/chemistry , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL